More Parts With the Help of Libraries
The images above are my schematic for assignment 4. There is a 128 * 64 OLED display and a rotary encoder module. The OLED display have its SCL(SCK) pin connected to pin A5, and SDA pin connected to pin A4 of the Arduino. The rotary encoder has its DT pin to pin 3, and CLK pin to pin 2 of the Arduino. I'm not using the SW(switch) pin, according to the data sheet, it don't have to be connected.
According to the rotary encoder's library, when using pins that have the "interrupt" ability, the encoder will have the best performance. And from the Arduino website, only pin 2 and 3 on the UNO has the "interrupt" ability. When connecting to pin 5 and 6, the encoder's response will become unstable and laggy, making the user experience sub-optimal.
The above image shows the actual Arduino circuit build on breadboard. The red LED and the button are not used in this assignment.
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include <Encoder.h>
#define SCREEN_WIDTH 128 // OLED display width, in pixels
#define SCREEN_HEIGHT 64 // OLED display height, in pixels
// Declaration for an SSD1306 display connected to I2C (SDA, SCL pins)
#define OLED_RESET -1 // Reset pin # (or -1 if sharing Arduino reset pin)
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);
// A Honda logo to display
// 's-l500', 48x48px
const unsigned char epd_bitmap_s_l500 [] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0xff, 0xff,
0xf0, 0x00, 0x00, 0x7c, 0x00, 0x00, 0x1e, 0x00, 0x00, 0xe3, 0x00, 0x00, 0xe3, 0x00, 0x01, 0xc3,
0x00, 0x00, 0xe1, 0x80, 0x01, 0x83, 0x80, 0x00, 0xe0, 0x80, 0x01, 0x83, 0x80, 0x00, 0xe0, 0xc0,
0x01, 0x03, 0x80, 0x01, 0xe0, 0xc0, 0x03, 0x03, 0x80, 0x01, 0xc0, 0xc0, 0x03, 0x03, 0x80, 0x01,
0xc0, 0xc0, 0x03, 0x03, 0xc0, 0x01, 0xc0, 0xc0, 0x03, 0x03, 0xc0, 0x01, 0xc0, 0xc0, 0x03, 0x03,
0xc0, 0x03, 0xc0, 0xc0, 0x03, 0x03, 0xc0, 0x03, 0xc0, 0xc0, 0x03, 0x03, 0xe0, 0x03, 0xc0, 0xc0,
0x03, 0x03, 0xe0, 0x03, 0xc0, 0xc0, 0x01, 0x03, 0xe0, 0x07, 0xc0, 0xc0, 0x01, 0x03, 0xf0, 0x07,
0xc0, 0xc0, 0x01, 0x03, 0xf8, 0x1f, 0xc0, 0xc0, 0x01, 0x03, 0xff, 0xff, 0xc0, 0xc0, 0x01, 0x83,
0xff, 0xff, 0xc0, 0x80, 0x01, 0x81, 0xf8, 0x1f, 0xc0, 0x80, 0x01, 0x81, 0xf8, 0x0f, 0xc1, 0x80,
0x00, 0x81, 0xf0, 0x0f, 0xc1, 0x80, 0x00, 0xc1, 0xf0, 0x07, 0xc1, 0x80, 0x00, 0xc1, 0xe0, 0x07,
0xc3, 0x00, 0x00, 0x61, 0xe0, 0x07, 0x83, 0x00, 0x00, 0x71, 0xe0, 0x03, 0x8e, 0x00, 0x00, 0x1f,
0x00, 0x00, 0xfc, 0x00, 0x00, 0x03, 0xff, 0xff, 0xe0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
long oldPos = 0;
long currPos;
// Half of the total level the knob can adjust (-20 to +20)
const int KNOB_LEVEL_HALF = 20;
int knobExceed = 0;
int currExceed = 0;
// Connect to pin 2 and pin 3, only two pins with interrupt ability to ensure max performance
Encoder myEnc(2, 3);
void setup() {
Serial.begin(115200);
if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {
Serial.println(F("SSD1306 allocation failed"));
for(;;); // Don't proceed, loop forever
}
// Clear the screen
display.clearDisplay();
// Display Logo
display.drawBitmap(
(display.width() - 48) / 2,
(display.height() - 48) / 2,
epd_bitmap_s_l500, 48, 48, 1
);
display.display();
delay(2000);
display.clearDisplay();
delay(1000);
display.setTextSize(2);
display.setTextColor(WHITE);
// Set cursor to the upper left corner
display.setCursor(0, 0);
display.print("Value: ");
// Move cursor
display.setCursor(64, 0);
// Set text to be inverted color
display.setTextColor(BLACK, WHITE);
display.println(String(currPos));
drawIndicator(currPos);
display.display();
}
void loop() {
// Read from the rotary encoder
currPos = posConv(myEnc.read());
// Enter if converted position changed or Exceeding status changed
if (currPos != oldPos || currExceed != knobExceed) {
oldPos = currPos;
// Set currExceed same as knobExceed
currExceed = knobExceed;
Serial.println(currPos);
// Clear previous content
display.clearDisplay();
// Set text size
display.setTextSize(2);
display.setTextColor(WHITE);
// Set cursor to the upper left corner
display.setCursor(0, 0);
// Display content
display.print("Value: ");
// Move cursor
display.setCursor(64, 0);
// Set text to be inverted color
display.setTextColor(BLACK, WHITE);
display.println(String(currPos));
drawIndicator(currPos);
display.display();
}
}
int posConv(long inputPos) {
// Serial.println(inputPos);
int result;
// Result is position divided by four since the knob clicks every four turns
result = (int)(round((inputPos) / 4.0));
// Serial.println(result);
if (result > KNOB_LEVEL_HALF) {
// Knob value exceeds max value
result = KNOB_LEVEL_HALF;
// Set knob value to max to prevent further increase
myEnc.write(KNOB_LEVEL_HALF * 4 + 2);
knobExceed = 1;
}
else if (result < -KNOB_LEVEL_HALF) {
// Knob value exceeds min value
result = -KNOB_LEVEL_HALF;
// Set knob value to min to prevent further decrease
myEnc.write(-KNOB_LEVEL_HALF * 4 - 2);
knobExceed = -1;
}
else {
knobExceed = 0;
}
Serial.println(knobExceed);
return result;
}
void drawIndicator(int inputPos) {
int _width = 2;
int _height = 16;
int _x;
int _y = 40;
int padding = 8;
// calculate indicator's position from input position value
_x = map(inputPos, -KNOB_LEVEL_HALF, KNOB_LEVEL_HALF, padding, SCREEN_WIDTH - padding);
_x = floor(_x - _width / 2);
// Draw a straight line as the slider
display.drawLine(padding, _y, SCREEN_WIDTH - padding, _y, WHITE);
// Draw a rectangle as the indicator
display.fillRoundRect(_x, floor(_y - (_height / 2)), _width, _height, 1, WHITE);
// Draw three dashes
if (knobExceed == 1) {
// Knob is turning too high
display.drawLine(SCREEN_WIDTH - padding + 2, floor(_y - _height / 4), SCREEN_WIDTH - padding + 4, floor(_y - _height / 4), WHITE);
display.drawLine(SCREEN_WIDTH - padding + 2, _y, SCREEN_WIDTH - padding + 4, _y, WHITE);
display.drawLine(SCREEN_WIDTH - padding + 2, floor(_y + _height / 4), SCREEN_WIDTH - padding + 4, floor(_y + _height / 4), WHITE);
}
else if (knobExceed == -1) {
// Knob is turning too low
display.drawLine(padding - 2, floor(_y - _height / 4), padding - 4, floor(_y - _height / 4), WHITE);
display.drawLine(padding - 2, _y, padding - 4, _y, WHITE);
display.drawLine(padding - 2, floor(_y + _height / 4), padding - 4, floor(_y + _height / 4), WHITE);
}
}
The above gif shows how this program run. The screen will first display a Honda logo for two seconds. Then it will display the current value of the rotary encoder, starting from 0. The user can rotate the knob clockwise to increase the value or counter-clockwise to decrease. Values won't change when reaching the -20 ~ +20 limit. Below the value is a small indicator that will also change its position based on the value. When reached the limit, if the user still rotates in that direction, small dashes appear beside the indicator to remind the users to stop.